List of Figures

2.1 Portable ultrasound scanner. The total weight of the device is 2.4 kg. (Courtesy of SonoSite) ... 6
2.2 Block diagram of a simple A-mode system .. 6
2.3 Block diagram of a M-mode system .. 7
2.4 Acquiring B-mode images using: (a) mechanically rotated single crystal transducer, (b) linear-array transducer, and (c) phased-array transducer. 8
2.5 Block diagram of a common 3D ultrasound system showing the essential components used to acquire patient data [7]. ... 9
2.6 Different types of volumetric ultrasound data acquisition. The position and direction of the current plane is determined by a motor drive system. 9
2.7 Example a color flow map superimposed on B-mode sector image. 10
2.8 Mapping from polar to Cartesian coordinate system. Figure (a) shows the geometry of the acquisition and the display. Figures (b) and (c) show how the data is mapped to the screen when the start depth is 0, and greater than 0, respectively. 12
2.9 Geometry used for zooming in the image. The parameters necessary to find are the minimum and maximum radial distances and the minimum and maximum angles. The number of segments between θ'_{min} and θ'_{max} is kept constant. The clipping can be left to the hardware. ... 13
2.10 Displaying data parallel to the transducer surface: c-scan (left) and a cross-section with a plane (right). ... 14
2.11 Display and navigation in 3D ultrasonic data .. 15

3.1 On the left: non-moving volume V with moving fluid. The time rate of mass within V is equal to the mass flowing through the surface S. On the right: the mass leaving through the element area ΔS in time Δt is equal to the mass in the slanted cylinder of length $|\vec{v}|\Delta t$, height $\vec{v} \cdot t$ and base area ΔS 18
3.2 Forces acting on a particle occupying volume V^*. Every particle located on on the surface at coordinates \vec{x}_S moves with velocity $\vec{v}(\vec{x}_S,t)$. The acting forces are the surface force per unit area f_S^T and the body force per unit volume f_B. 19
List of Figures

3.3 A snapshot of pressure distribution of a 2D plane wave. The gray level is proportional to the pressure magnitude. ... 22
3.4 Relation between spherical and Cartesian coordinates 23
3.5 A snapshot of the 2D pressure distribution of a spherical wave. There is discontinuity at the center of the coordinate system. 24
3.6 Position of transducer, field point and coordinate system. 25
3.7 Geometry for Fresnel and Fraunhofer approximations for a radiation problem. .. 26
3.8 Idealized continuous pressure field for flat, round transducer (aperture). 28
3.9 Transmission and reflection of a plane wave propagating obliquely to the reflecting surface. .. 29
3.10 Illustration of multiple scattering. Rayleigh scattering is assumed for the point scatterers and Born approximation for the scattering medium. 30
3.11 Delay and sum beamforming. .. 31
3.12 2D geometry for calculating the delay profiles. 32
3.13 The system is characterized by axial, lateral and elevation resolution. 33
3.14 (Left) An aperture of size D composed of elements with size w whose centers are positioned at distance d_x apart is modeled as $\Pi(x_0/D)\Pi(x_0/w)\ast \text{III}(x/d_x)$. The radiation pattern (right) is $\text{sinc}(x_1/ (\lambda z_1) w) \cdot [\text{sinc}(x_1/(\lambda z_1) D) \ast \text{III}(x_1/(\lambda z_1) d_x)]$. .. 34
4.1 Simple model for acquiring synthetic aperture data. 40
4.2 Illustration of the synthetic aperture geometry. 41
4.3 Simplified scheme of a synthetic aperture ultrasound system 43
4.4 Illustration of the influence of the element size on the useful aperture. The bigger the width of a single transducer element, the narrower is the beam. The width of the beam determines the width of the useful aperture. 44
4.5 Filling in the k-space for (a) phased array imaging, and (b) synthetic aperture imaging. .. 48
4.6 Creating the two-way radiation pattern. Sub-plot (a) shows the radiation pattern when the elements are δ functions, and (b) when the elements have finite size. Sub-plot (c) shows a comparison between the radiation patterns of a phased array imaging (dashed) and of a synthetic aperture imaging. The distance between the elements d_x is $d_x = 2\lambda$, and the width of the elements is $w = 1.5\lambda$. 49
5.1 Receive synthetic aperture imaging. ... 54
5.2 An example of the necessary units of a synthetic receive aperture ultrasound imaging system .. 56
5.3 Simple model for synthetic transmit aperture ultrasound imaging. 57
5.4 The geometry associated with the delay calculation. 58
5.5 Active transmit/receive element combinations for different types of synthetic aperture ultrasound imaging. Each row corresponds to one transmit event. The transmission is done with the element whose index is equal to the row number. The filled squares symbolize an active element in receive. 60

5.6 The effective apertures and the two-way radiation patterns of four variations of synthetic aperture imaging. The distance between the elements is $d_x = \lambda/2$ and the size of the elements is $w \to 0$. 61

6.1 Synthetic transmit aperture imaging. The array consists of 3 elements. The figure shows 4 consecutive emissions. Two high resolution images are created: one at emission #3 and one at emission #4 ... 64

6.2 Recursive ultrasound imaging ... 66

6.3 Block-scheme representation of the different variations of the Recursive Ultrasound Imaging ... 68

6.4 Comparison between the PSF of the CRUI and ARUI. The ARUI is given for two transmit sequences. The innermost contours are at level -6 dB. The neighboring contours are at levels 6 dB apart ... 70

6.5 Illustration of the source of motion artifacts in recursive ultrasound imaging for (a) classical and (b) add-only recursive ultrasound imaging ... 71

7.1 Idealized wavefront of a concave transducer ... 73

7.2 Idealized wavefront of a focused array transducer ... 74

7.3 The virtual source of a "defocused" linear array lies behind the transducer ... 75

7.4 The geometry of a linear array involved in creating a virtual source ... 75

7.5 Simulated pressure field of a linear array transducer ... 76

7.6 Simulated ultrasound fields. The contours given with red dashed lines start at a level of -6 dB and are drawn at levels -6 dB apart. The black lines connect the edges of the transducer with the focal point. Not that the axial distance starts from the 4th mm ... 78

7.7 Defocusing by attempting to approximate a desired wavefront ... 79

7.8 The difference between the PSF using 11 elements and a reference PSF using a single element. Plot (a) shows the difference in lateral direction, and plot (b) shows the difference in the axial direction ... 79

7.9 The difference between the PSF using 11 elements with apodization applied on the active elements, and a reference PSF using a single element. Plot (a) shows the difference in lateral direction, and plot (b) shows the difference in the axial direction ... 80

7.10 The angular size of the PSF with and without apodization in transmit. The apodization was a Hamming window ... 80

7.11 The wavefront created by a virtual source behind the transducer. The plot is at a constant distance from the virtual source ... 81
7.12 Volumetric scan using a linear array. The volume is scanned plane by plane. The beam is electronically focused in the plane. Due to multiple focal zones a tight beam is formed. From plane to plane the transducer is moved mechanically. 83

7.13 Peak pressure distribution in the elevation plane. The contours are shown at levels 6 dB apart. Sub-plot (a) shows the pressure distribution normalized to the peak at the focus, and sub-plot (b) shows the pressure distribution normalized to the maximum at each depth. The transducer has a center frequency of 7 MHz and 60% fractional bandwidth. The excitation is a 2-cycles Hanning weighted pulse. The height of the transducer is 4.5 mm, and the elevation focus is 25 mm away from the transducer surface. ... 84

7.14 Forming a virtual array from the focal points of the scan lines. 85

7.15 Two stage beamforming for 3D volumetric imaging. In the first stage high-resolution images are formed using synthetic transmit aperture focusing. In the second stage each of the RF scan lines from the high resolution images is post focused to increase the resolution in the elevation plane. 86

7.16 The 3D point spread function, (a) before, and (b) after synthetic aperture post focusing in the elevation direction. The surface of the point spread function is reconstructed at a level of -30 dB. .. 87

7.17 The point spread function as a function of depth. The surface is reconstructed at a level of -10 dB. .. 87

7.18 PSF in the elevation plane: (top) before and (bottom) after synthetic aperture post focusing. The numbers show the level in the respective region, i.e., the first contour line delineates the -6 dB region. .. 89

7.19 The wire phantom: (top) before, and (bottom) after post focusing. The surface is reconstructed from the volumetric data at a level of -10 dB. 89

8.1 The Very Large Array radio telescope in New Mexico. It consists of 27 identical 25-m antennas arranged in a Y-shaped array. Two arms are 21 km long, and the third arm is 19 km long. The array belongs to National Radio Astronomy Observatory, and the picture is taken from http://www.aoc.nrao.edu. 91

8.2 Reducing the level of the side and grating lobes. The distance between the elements in transmit is λ, and in receive is 1.5λ. .. 92

8.3 Synthetic transmit aperture imaging using only two emissions. 93

8.4 Design of Vernier arrays. The spacing between the elements in the transmit aperture is $2\frac{\lambda}{T}$ and in the receive one is $3\frac{\lambda}{T}$. The smoothness of the effective aperture is achieved by applying cosine2 apodization. The effective aperture of the dense array is given for comparison. 94

8.5 Transmit and receive aperture functions for a sparse synthetic aperture imaging system. The effective aperture is formed using 57 receive elements and 5 emissions. ... 94
8.6 Some parameters of the point spread function of a sparse synthetic transmit aperture imaging system: (a) integrated side lobe to main lobe ratio (ISLMLR), (b) -4 dB angular width, (c) -6 dB angular width, and (d) -12 dB angular width. The PSF was obtained measuring a wire in a water bath using XTRA system. The main lobe was defined as the signal above -30 dB.

8.7 Comparison of the PSF for the apodization combinations boxcar/boxcar and boxcar/Hanning. The number of emissions is 4.

8.8 Comparison of the resolution between when imaging with 2 and 64 emissions. Two cases for a receive apodization are depicted: Hanning (top), and boxcar (bottom).

8.9 The point spread function of the XTRA system obtained with 2, 4, 8, 16, 32, and 64 emissions. The transmit apodization is boxcar. The receive apodization is Hanning, top, and boxcar, bottom.

8.10 Classical Vernier arrays as suggested by Lockwood and Foster [50].

8.11 Circularly symmetric Vernier arrays.

8.12 Enhanced Vernier arrays as suggested by Austeng and Holm [114, 113].

8.13 Enhanced Vernier arrays with circular footprint.

8.14 Circularly symmetric enhanced Vernier arrays.

8.15 Diagonally optimized Vernier arrays as suggested by the author [112].

8.16 Diagonally optimized Vernier arrays with circular footprint.

8.17 Clustered arrays [112].

8.18 B-mode images of the point spread function of the array pairs shown in Figures 8.10, 8.11, 8.12, and 8.13. The dynamic range of images is 60 dB.

8.19 B-mode images of the point spread function of the array pairs shown in Figures 8.14, 8.15, 8.16, and 8.17. The dynamic range of images is 60 dB.

8.20 The angular resolution at -6 dB in the \((x-z)\) and \((y-z)\) planes.

8.21 The angular resolution at -30 dB in the \((x-z)\) and \((y-z)\) planes.

8.22 The peak levels of the grating lobes.

8.23 The integrated main lobe to side lobe ratio.

8.24 The projections of the point spread functions in \((x-z)\) and \((y-z)\) planes.

9.1 Schematic diagram of a single element transducer together with the generation of the pulse and the subsequent matched-filter processing. The picture illustrates the evolution of the time signal for a single scatterer placed at the focus or in the far field.

9.2 Examples of two radio pulses with center frequency \(f_0 = 5\) MHz. The left column shows a pulse with a Gaussian window applied on it, and the right with a rectangular window applied on. The top row shows the signals in time domain, and bottom row in frequency domain. The windowing functions are drawn in red.
9.3 Illustration of the pulse compression and the influence of the pulse duration and bandwidth on the auto correlation function. The top row shows 3 real signals - two frequency modulated pulses and a one-cycle sine pulse. The duration of the FM pulses and the sine pulse is 30 μs and 1 μs respectively. The mean frequency f of the signals is 1 MHz. The middle row shows the frequency density spectra. The bottom row shows the magnitude (envelope) of their autocorrelation functions.

9.4 Reducing the side lobes by temporal weighting.

9.5 Illustration of the filter design for weighting of the chirps.

9.6 The output of a filter when there is a mismatch between the center frequency of the signal and the center frequency of the impulse response of the filter.

9.7 The ambiguity functions of a long (left) and short (right) pulses. The short pulse is well localized in time, while the long pulse is well localized in frequency.

9.8 Comparison between the ambiguity function of an RF pulse (left) and a chirp (right) with the same duration.

9.9 Compression using Golay codes.

9.10 Creating waveforms using complementary Golay codes. From top to bottom: the golay pair; base-band signal; RF signal.

9.11 Performance of the Golay codes shown in Fig. 9.10.

9.12 Spatially encoded transmits using 4 transmit elements.

9.13 The gain in pressure. The plot shows the ratio of the maximum of the amplitude of the generated pressure using a single element emission and a 4 elements Hadamard encoded emission. The plot is obtained by simulation in Field II. The left image shows the spatial distribution and the right shows the magnitude.

9.14 B-mode images of a tissue mimicking phantom for different combinations of temporal and spatial encoding schemes, and number of transmissions.

9.15 B-mode images of a carotid artery for different combinations of temporal and spatial encoding schemes, and number of transmissions.

10.1 Principle of velocity estimation using cross-correlation.

10.2 System measuring the velocity using cross-correlation.

10.3 Segmentation of RF lines.

10.4 Graphical representation showing that the three points near the maximum can be approximated by a parabola.

10.5 Theoretical precision versus time shift and measurement angle. The parameters are set as in [135]: SNR = 20 dB, RMS bandwidth = 2.5 MHz, and beam width = 0.6 mm.

10.6 Principle of velocity estimation using cross-correlation and FM chirps.

11.1 Simulated pulse echo field. The number of elements in transmit and receive are $N_{xmt} = 1$ and $N_{rcv} = 64$, respectively.
11.2 The pulse echo response of a single point for a transducer with 60% fractional bandwidth. The number of transmitting and receiving elements is $N_{tx} = 1$ and $N_{rx} = 64$, respectively.

11.3 Illustration of the Fourier relation between the apodization function of a focused transducer and the line spread function. Sub-figures (a) and (b) show the imaging situation and the geometric relation between the coordinates, respectively.

11.4 Step-by-step building of the approximation of the point-spread-function of a low-resolution image. The bottom plots show a comparison between the k-space approximation and a Field II simulation.

11.5 The rotation of a focused transducer round the focal point (a) and the translation of a linear array (b) result in rotation of the point-spread-functions.

11.6 Illustration of several combinations of transmit and receive aperture locations resulting in the same inclination of the point-spread-function.

11.7 Comparison between the PSF obtained using Field II, and a analytically created and rotated PSF.

11.8 Making a high-resolution image with only two emissions. The emissions are done first with the leftmost element and then with the rightmost one. The left column shows the case when the point scatterer is still, the center column when the scatterer moves away from the transducer and right column when it moves parallelly to the transducer.

12.1 Delay errors in synthetic receive aperture imaging using 4 sub-apertures. The left sub-figure shows the case of neighboring sub-apertures and the right sub-figure shows interleaved sub-apertures.

12.2 The k-space representation of the SRAU. The left graph shows the case of neighboring and the right graph of interleaved sub-apertures, respectively.

12.3 Forming a high-resolution image from low-resolution sub-aperture images as in [2].

12.4 Sub-apertures used for the motion estimation using (a) partially, and (b) fully common spatial frequencies. The shaded squares symbolize the active elements. The common spatial frequencies are surrounded by rectangles.

12.5 Model for motion compensation for synthetic aperture ultrasound imaging without spatial encoding.

12.6 Model for motion compensation for synthetic aperture ultrasound imaging with spatial encoding.

12.7 Summary of the considerations and steps involved in the motion compensation.

12.8 Measurement setup.

12.9 Comparison of B-mode images. The left column shows an image obtained using recursive ultrasound imaging without motion compensation. The center column shows a reference image obtained at one position. The right column shows an image using recursive ultrasound imaging and motion compensation.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.10</td>
<td>Resolution of the images. The upper plot shows the maximum along the RF lines of the 2D auto-covariance of a speckle region. The lower plot shows the 2D auto-correlation functions in a region of a single point scatterer.</td>
<td>175</td>
</tr>
<tr>
<td>12.11</td>
<td>The RMS values of the images obtained using recursive ultrasound imaging as a function of angle.</td>
<td>175</td>
</tr>
<tr>
<td>12.12</td>
<td>Comparison of B-mode images. The left column shows an image obtained using recursive ultrasound imaging without motion compensation and spatial encoding. The right column shows an image obtained using motion compensation and spatial encoding using Hadamard matrix.</td>
<td>176</td>
</tr>
<tr>
<td>12.13</td>
<td>Resolution of the images. The upper plot shows the maximum along the RF lines of the 2D auto-covariance of a speckle region. The lower plot shows the 2D auto-correlation functions in a region of a single point scatterer.</td>
<td>177</td>
</tr>
<tr>
<td>12.14</td>
<td>The RMS values of the images with and without Hadamard encoding and motion compensation.</td>
<td>177</td>
</tr>
<tr>
<td>12.15</td>
<td>The maximum cross-correlation value between two consecutive frames.</td>
<td>178</td>
</tr>
<tr>
<td>12.16</td>
<td>The mean velocity and the velocity at \pm one standard deviations as a function of depth.</td>
<td>179</td>
</tr>
<tr>
<td>12.17</td>
<td>The mean velocity and the velocity at \pm one standard deviations as a function of angle.</td>
<td>180</td>
</tr>
<tr>
<td>13.1</td>
<td>Point spread functions obtained using different transmit sequences.</td>
<td>184</td>
</tr>
<tr>
<td>13.2</td>
<td>Comparison between three high-resolution images of a moving point scatterer.</td>
<td>185</td>
</tr>
<tr>
<td>13.3</td>
<td>Illustration of the fact that images of a moving scatterer acquired at different time instances but using the same transmit order are translated versions of each other.</td>
<td>187</td>
</tr>
<tr>
<td>13.4</td>
<td>Estimation of the cross-correlation function from a number of high-resolution RF lines.</td>
<td>189</td>
</tr>
<tr>
<td>13.5</td>
<td>The result of velocity estimation using non-motion-compensated high-resolution images and a standard cross-correlation velocity estimation procedure. The estimated velocity as a function of emission number and depth is shown.</td>
<td>192</td>
</tr>
<tr>
<td>13.6</td>
<td>The result of velocity estimation using non-motion-compensated high-resolution images and a standard cross-correlation velocity estimation procedure. The figure shows the mean velocity and the region of \pm one standard deviation.</td>
<td>192</td>
</tr>
<tr>
<td>13.7</td>
<td>The result of velocity estimation using non-motion-compensated high-resolution images and the modified cross-correlation velocity estimation procedure. The estimated velocity as a function of emission number and depth is shown.</td>
<td>193</td>
</tr>
</tbody>
</table>
13.8 The result of velocity estimation using non-motion-compensated high-resolution images and the modified standard cross-correlation velocity estimation procedure. The figure shows the mean velocity and the region of ± one standard deviation. ... 193

13.9 The simulation setup. ... 194

13.10 The excitation used in the simulation (top), the applied filter (middle), and the resulting output (bottom) are given. The output is a result of applying the filter on a signal obtained by convolving the excitation with the impulse response of the transducer twice. ... 196

13.11 Velocity profile at $\gamma = 45^\circ$ using the traditional cross-correlation velocity estimation. The number of lines per estimate is $N_c = 24$, and the segment length is 2.5λ. ... 197

13.12 Velocity profile at $\gamma = 45^\circ$ using the traditional cross-correlation velocity estimation. The number of lines per estimate is $N_c = 4$, and the segment length is 5λ. ... 197

13.13 Velocity profile at $\gamma = 45^\circ$ using the modified cross-correlation velocity estimation. The number of lines per estimate is $N_c = 24$, and the segment length is 2.5λ. ... 198

13.14 Velocity profile at $\gamma = 45^\circ$ using the modified cross-correlation velocity estimation. The number of lines per estimate is $N_c = 4$ and the segment length is 5λ. ... 198

13.15 Velocity profile at $\gamma = 35^\circ$ using the modified cross-correlation velocity estimation. The number of lines per estimate is $N_c = 4$, and the segment length is 5λ. ... 199

13.16 Velocity profile at $\gamma = 55^\circ$ using the modified cross-correlation velocity estimation. The number of lines per estimate is $N_c = 4$, and the segment length is 5λ. The signal was range gated too-early and the estimates do not cover the whole vessel. ... 199

13.17 The data used to find the velocity is taken from lines along the vessel. 201

13.18 2D vector velocity estimation using speckle tracking (ensemble tracking). 202

A.1 Confocal spherical surfaces. On the left the 3-D case is shown. On the right a cut in the $(y-z)$ plane is shown. ... 211

B.1 Volumetric scanning. The center of the coordinate system is in the middle of the transducer surface. ... 216

B.2 Transmit, receive and effective apertures. The resulting effective aperture, from top to bottom, has rectangular, triangular and cosine2 apodizations 217

B.3 The transmit and receive aperture geometries. From bottom down: apertures for triangular approximation; vernier arrays with triangular sampling pattern. 218

B.4 Effective aperture obtained by a triangular approximation. 219
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.5</td>
<td>Point spread functions. The arrays are designed using: a) Vernier interpolation b) Diagonally optimized Vernier approximation. 220</td>
</tr>
<tr>
<td>C.1</td>
<td>Recursive ultrasound imaging. In transmit only one element is excited. Multiple receive beams are formed simultaneously for each transmit pulse. Each element is excited again after N_{xmt} emissions ($N_{xmt} = N_{xdc} = 10$ in this example). 225</td>
</tr>
<tr>
<td>C.2</td>
<td>The development of a single high-resolution scan-line as a function of the number of emissions n for normal recursive imaging (top), and for add-only recursive imaging (bottom). 229</td>
</tr>
<tr>
<td>C.3</td>
<td>Synthetic image of a wire phantom. 230</td>
</tr>
<tr>
<td>D.1</td>
<td>Synthetic transmit aperture focusing 235</td>
</tr>
<tr>
<td>D.2</td>
<td>Forming a virtual array from the focal points of the scanned lines 235</td>
</tr>
<tr>
<td>D.3</td>
<td>The beamforming stages for 3D focusing. 237</td>
</tr>
<tr>
<td>D.4</td>
<td>The 3-D point-spread function outlined at -10 dB. 238</td>
</tr>
<tr>
<td>D.5</td>
<td>PSF in the elevation plane: (top) before and (bottom) after synthetic aperture focusing. The innermost contour is at level of -6 dB, and the difference between the contours is also 6 dB. 239</td>
</tr>
<tr>
<td>D.6</td>
<td>Outline at -10 dB of the wire phantom: (top) before, and (bottom) after post focusing. 240</td>
</tr>
<tr>
<td>E.1</td>
<td>Recursive ultrasound imaging. In transmit only one element is excited. Multiple receive beams are formed simultaneously for each transmit pulse. Each element is excited again after N_{xmt} emissions ($N_{xmt} = N_{xdc} = 10$ in this example). 245</td>
</tr>
<tr>
<td>E.2</td>
<td>Spatially encoded transmits using 4 transmit elements. 246</td>
</tr>
<tr>
<td>E.3</td>
<td>Motion compensation for recursive imaging without spatial encoding. 247</td>
</tr>
<tr>
<td>E.4</td>
<td>Motion compensation for recursive imaging with spatial encoding. 248</td>
</tr>
<tr>
<td>E.5</td>
<td>Mean reference velocity. 250</td>
</tr>
<tr>
<td>E.6</td>
<td>The mean velocity and the velocity at $\pm \sigma$ as a function of angle. 251</td>
</tr>
<tr>
<td>F.1</td>
<td>Set-up for simulation of ultrasound imaging. 254</td>
</tr>
<tr>
<td>F.2</td>
<td>Optical image from the visual human project of a right kidney and a liver lobe. 257</td>
</tr>
<tr>
<td>F.3</td>
<td>Synthetic ultrasound image of right kidney and liver based on an optical image from the visual human project. 258</td>
</tr>
<tr>
<td>G.1</td>
<td>Overall diagram of system. 264</td>
</tr>
<tr>
<td>G.2</td>
<td>Main diagram of Receiver board. 266</td>
</tr>
<tr>
<td>G.3</td>
<td>Client-server model of software. 268</td>
</tr>
<tr>
<td>H.1</td>
<td>Mapping of ultrasonic data from polar to Cartesian coordinate system. 275</td>
</tr>
<tr>
<td>H.2</td>
<td>Phased array image. 275</td>
</tr>
</tbody>
</table>
H.3 Displaying data parallel to the transducer surface: c-scan (left) and a cross-section with a plane (right). .. 276
H.4 Display of and navigation in 3D ultrasonic data. 277
H.5 3D volume. ... 277

J.1 The hardware of the XTRA system. The 19” rack is seen on the left, the control PC is in the middle, and the screen showing a conventional image of tissue mimicking cyst and a wire phantom is seen on the right. (Picture taken from [39]) 282
List of Tables

2.1 Measured performance. .. 16

7.1 Simulation parameters. .. 86

7.2 The resolution at -6 dB as a function of depth. 88

8.1 Properties of the designs. N_{xmt}, N_{rcv}, N_{tot}, and N_{over} are the number of transmit, receive, total and overlapping elements, respectively. $L_{\text{x xmt}}$, $L_{\text{x rcv}}$, $L_{\text{y xmt}}$, and $L_{\text{y rcv}}$ are the distances between the outermost elements in x and y directions for the transmit and receive apertures given in number of elements. .. 109

8.2 Simulation parameters. .. 112

8.3 Summary of some indicators for the performance of the different designs. The table shows the resolution in the azimuth δ_θ and elevation δ_ϕ planes at levels of -6 and -30 dB. The integrated main lobe to side lobe ratio and the peak grating lobe levels are also given. .. 112

9.1 Some parameters of the transducer and the system. 135

9.2 The number of active elements N_{act} used for the different experiments as a function of the number of emissions and the encoding scheme. sin means “conventional pulse”, chirp means “FM pulse”, and had means “using Hadamard encoding”. N_{xmt} is the number of emissions per frame. 137

11.1 Simulation parameters used for the comparison in Figure 11.4. 157

12.1 Results from the velocity estimation at an angle 45°. 180

13.1 Typical velocities in the human vascular system (data taken from [132], originally published in [151]). .. 188

13.2 Relevant parameters for the experimental verification of the new method. . 191

13.3 Typical dimensions of some vessels in the human vascular system (data taken from [132], originally published in [151]). 195

13.4 Relevant parameters for the simulation of the parabolic flow. 195
List of Tables

B.1 Simulation parameters. .. 221
B.2 Simulation results. The table shows the -3dB and -6dB beam-widths, the mainlobe-to-sidelobe energy ratio (MSR), and the highest level of the grating lobes. .. 221

C.1 Simulation parameters for a 3 MHz phased array system. 228
C.2 The position and level of the first grating lobe as a function of the number of emissions N_{xmt}. ... 228
C.3 Parameters of the EXTRA measurement system [161]. The same parameters were used in simulations to obtain the expected levels and positions of the grating lobes. .. 228
C.4 Measured versus expected grating lobe position and level for $N_{act} = 11$. 229

D.1 Simulation parameters .. 238
D.2 The resolution at -6 dB as a function of depth. .. 239
D.3 Grating lobes in the azimuth plane. .. 241

E.1 Measurement parameters .. 249
E.2 Results from the velocity estimation at angle $(\vec{v}, \vec{n}) = 45^\circ$ 250

F.1 Simulation parameters for phased array imaging. .. 257
F.2 Simulation times for scanning the human-liver phantom. 258

J.1 Selected specification of XTRA system. .. 281
J.2 .. 282